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Application of a Nyström Method to 
Solving 3-D Electromagnetic Interior 
Scattering Problems 

INTRODUCTION 
The impetus of our research is electromagnetic (EM) dosimetry. We are interested in de- 
termining the distribution of electromagnetic field strength inside a human organ or even 
the whole body in presence of an externally generated electromagnetic field. This field can 
come, for example, from a cellular telephone and one is interested in assessing its biological 
effects. Mathematically, this is a problem of an interior scattering problem where one solves 
the Maxwell's Equations for an induced field inside a finite body. 

For our particular interest here, we are interested in the simple case in which the external 
source can be modeled as a plane wave and for frequencies in the microwave range. 

The interior scattering problem is a classical problem and many solution methods have 
been proposed. One popular class of methods is the finite-difference time domain (FDTD) 
methods in which the Maxwell's Equations are discretized directly and solved [5,12]. Another 
class of methods, just as popular as FDTD, is Integral Equation (IE) Methods [7]. Here 
Maxwell's Equations are cast into integral equations and solved using, for example, the 
Method of Moments (MM) [4]. 

In this work, we have concentrated on the IE approach. However, instead of using the 
Method of Moments (MM), we used a variant of the Nyström Method. The Nyström method 
is more direct and does not require approximating the sought field using basis functions as in 
MM. The merit of the Nyström Method as a tool to solve electromagnetic scattering problems 
is rather controversial. There are some who have reported success with this method [2, 13], 
but others did not [1]. One of the goals of our research is to determine for ourselves the 
merit of one variant of this method. We believe our approach is new. 



FORMULATION 
In the integral equation formulation the field E(r) (we assume the time-harmonic case with 
time factor e~iut ) is written as the sum of the incident field E1 and the scattered field E": 

E(r) = E8(r) + E^r) (2.1) 

where the scattered field E8 is given by [9] 

E*(r) = (I+h v v-) i9{T' T>) F(f,) ^ (2-2) 

where 

P(r)   =   r(r)E(r) 

r(p)   =   k\v)-k\ 

9(r,r')   = 
ejk0r 

Aizr 
i _     _' 

The two "differentiations" outside the integral in equation (2.2) are numerically undesirable. 
It would be desirable to move the two "differentiations" through the integral and obtain 

E8(r)   =    / G(r,r')F(r')(fK' 

G(r,r')   =   (l + lvV.)ff(r,rO 

Unfortunately, this is mathematically incorrect, as the resulting integral is now divergent. 
One can, however, still move one "differentiation" safely through the integral. In MM, 
one can eliminate the remaining "differentiation" outside the integral by moving it over 
to the testing functions [3]. Without using the MM, we can move it through the integral 
only indirectly, resulting in a more complicated equation. In particular, by avoiding the 
singularity and applying "integration by parts" and the divergence theorem several times, 
one can arrive at the following equivalent formulation (assuming F satisfies a local Holder 
condition): 

E8(r)   =   Jv g(r,r') F(v') dV' 

+   T2   I V'V^(r,r')F(r')^' 
kl  Jv-v.iT) 



+   Tä   /„ V'VV(r,r')(F(r')-F(r))^' 

+   h   I   „ Vg(r,r')n'dS'F(r) (2.3) 

where Ve(r) is a sub-volume of V containing r. 
Two common methods for evaluating equation (2.3) exist, depending on the choice of 

Ve (r). By decomposing the body V into finite volume elements (e.g. tetrahedra), one can 
naturally take Ve[r) to be the volume element that contains r [14]. 

The other common method allows Ve(r) to vanish around r. This leads to an appar- 
ently simpler integral equation [14]. However, it requires the evaluation of a principal-value 
integral, which is numerically difficult. 

The approach we have taken here is to let Ve(r) — V. This leads to the equation 

Es(r)   =    [  g(v,v') F(r') dV + ^   f    Vg(v,r')h' dS' F(r) 
Jv K0      JBV 

+   ¥ I V'V'5(r,r')(F(r')-F(r))^' 

=   Ä(r) F(r) + / G(r, r')(F(r') - F(r)) dV (2.4) 

where 
Ä=-jj   /    V'g(ry)n'dS' +   I  g{v,v')l dV 

k0   JQV J v 

For a specified r,   Ä is completely known, so it can be accurately estimated. 

THE NYSTRÖM METHOD 
The Nyström Method assumes the integrals in Equations (2.3 or 2.4) can be approximated 
well by quadrature formulas using N quadrature points {rj}^. If Equation (2.1) is also 
evaluated at these same N points, then one obtains a linear system of N vector equations 
in the N unknown vectors {E(r;)}^x. Inverting this system will yield the values of {E(rj)}, 
which in turn can be used to estimate the value of the electromagnetic field E(r) at any 
other point r by using a discretized version of equation (2.1). 

The main sources of errors in the Nyström method as formulated here are (1) the sin- 
gularity of some of the integrals, (2) the numerical approximation of the integrals, and (3) 
the possible ill-conditioning of the system of equations. We will only address the first two 
sources of errors in the following. 



In some of our previous numerical experiments [8] with equation (2.3) using MM, we have 
encountered some numerical difficulties. Unsatisfactory results were observed whenever the 
contrast r is large or when more tetrahedra were used to represent the volume V. This could 
be caused by a multitude of things including the improper handling of the singularity, the 
poor choice of basis functions and/or testing functions, inappropriate dot-product, low-order 
numerical integration, sub-optimal choice of tetrahedra, or poor meshing in general. 

By using the Nyström method, we eliminate the need to consider basis/testing functions 
and to some extent (as we will we see later) meshing. 

SINGULARITY: A 1-D TEST 
Equation (2.4) is theoretically correct if we assume F satisfies a local Holder condition so 
that the integral 

X /v V'VV(r,r') (F(r') - F(r)) dV' (3.5) 

is convergent, despite the singularity at r. Since F is unknown, one way to incorporate this 
assumption on F (and we must) into a numerical quadrature is to assume the contribution of 
the singular point r to the volume integral in Equation (3.5) is negligible. More precisely, the 
volume integral over a sufficiently small volume surrounding r is negligible. This is basically 
a reiteration of the fact that Equation (3.5) is convergent when F satisfies a local Holder 
condition. 

To get an idea of the consequence of this assumption, we studied the following 1-D 
problem analogous to the actual 3-D problem described in Equation (2.4). 

ßf(x)   -   {fg{x,x')f{x')dx' 
Jo 

+   a ^ jT g(x, x') f(x') dx') = u™(x) (3.6) 

where typically, 

f(X)     =     T(X)U(X), T(x) = k2(x)-kl 

ß(x)   = 
1 1 

a = 
r(x)' % 

Furthermore, we assume (again motivated by the actual 3-D problem) 

g{x,x')   =   g{x,x') 

gx{x,x')   =    -gx.(x,x') 



/   g(x,x') dx' is convergent 
Jo 

rx+e 
lim  /       gx(x,x')dx' exists 
e-»0 Jx-£ 

/   gx'x'(x,x')dx' is divergent (3.7) 
Jo 

Analogous to the 3D case, this equation can be reformulated as 

Iß   -   r{x)- £ g{x,x')dx'}f{x)- j\g(x,x') 

+   agx,x.(x,x')}(f(x')-f(x))dx' 

=   u'ix) (3.8) 

where 
r(x) = a\gx(x,0) - gx(x,l)] 

A function g{x,x') that has all the properties listed in (3.7) is 

g{x,x') = \x-x' | (In \ x - x' | -1) (3.9) 

This is the function we have used. 
In the Nyström Method we used, the N quadrature points (and corresponding weights) 

chosen to evaluate the integrals in the IE are the those determined by the Gauss-Legendre 
quadrature points (GLQPs) [10] on [0,1]. More sophisticated choice of quadrature points 
(and weights) that depends on the singularity in question could have been designed [6], but 
was not done in this exploratory study. 

The sum of the weights is always equal to the length of the integration interval. We might 
view the GLQPs as a partition of [0,1] into sub-intervals each of which is centered around 
a GLQP and whose length is equal to the corresponding weight. The assumption that the 
solution satisfies a local Holder condition implies that the contribution from (2.4) is finite 
and negligible if the norm of the partition is small. In short, we may make the following 
approximation: 

Jo 

Y,^i9^U'i)(fM-f{'i)) (3-10) 



We generated simulated data by using the function 

/(*) = x(l - x) (3.11) 

to calculate an "incident wave". 
The results are shown in Figure 1. It shows the actual solution and the calculated solution 

for N = 10 and N = 25. 

Figure 1. Calculated vs Actual Field f(x) 
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For this example, the calculated solution approximates well the actual solution even when 
N is as low as 25. The "relative permittivity" here is 3. 



AN ITERATED INTEGRAL METHOD 

The apparent success of the 1-D analog problem holds out hope that the same might be true 
for the actual 3-D problem. Since the formulation of the problem in the 1-D case is identical 
to that in the 3-D case, it remains only to choose a 3-D integration method to complete the 

transition from 1-D to 3-D. 
The following is a brief summary of our experimenting with different possible 3-D inte- 

gration methods, cumulating in the Iterated Integral Method (IIM). 

A. Integration on Tetrahedra 
Methods of integration over tetrahedra abound in the literature. (Notably the classic work 
of Stroud.) We have implemented some of these methods by approximating the body in 
question by a family of tetrahedra or a family of curvilinear tetrahedra (for a better approx- 
imation) and using different integration formulas (differing in orders) on each tetrahedron 
or curvilinear tetrahedron (after appropriate transformation.) The results are mixed but 
generally disappointing. We remark in passing that by increasing the order of the method 
of integration on each tetrahedron, one invariably increases the number of integration points 
in each tetrahedron and thereby increases the number of unknowns and hence the size of 
the system matrix. The effect of increasing the order of the method of integration on the 
accuracy of the final solution is not clear at this time. Our preliminary studies also seem 
to indicate an increase in condition numbers of the system matrices as the order of inte- 
gration is increased. This suggests a subtle difference between numerical integration of a 
known function and that of an unknown function (as in solving an IE): merely using a more 
accurate numerical integration method does not necessarily yield a more accurate IE solver. 

B. Extrapolation 
One way to increase the order of the integration method without increasing the number of 
integration points is to use points outside the integration domain. So, instead of using only 
points of integration within a tetrahedron, we can also use a pre-specified number of points 
in neighboring tetrahedra. We have implemented one such method. In this method, the 
set of integration points will consist of the "centers" of all the tetrahedra in the system. 
(This is different from the 1-D case where the integration points are not predefined, but 
are chosen to optimize the order of the integration method.) For each tetrahedron, T, we 
picked a pre-specified number of nearest (independent) centers as the integration points 
for this tetrahedron, i.e., weights associated with these selected integration points and for 
this tetrahedron will be calculated so that certain moments are integrated exactly on the 
tetrahedron T. 



We observed that the weights generated by this method are often negative and are sus- 
ceptible to round off errors as well as errors incurred by approximating the given body by 
tetrahedra. 

We did not observe a significant improvement over the previous methods in which only 
interior quadrature points are used in the quadrature formulas for approximating integrals 
over tetrahedra. 

C. Iterated Integral Method (IIM) 

Under the assumption that F satisfies a local Holder condition, all integrals in Equation 2.4 
are absolutely convergent and we can evaluate them as iterated integrals (Fubini's Theorem.) 
Consequently, since each iterated (volume) integral is made up of three separate 1-D integrals, 
one can easily generate, for example, 3-D Gauss-Legendre quadrature points and weights 
from 1-D Gauss-Legendre quadrature points and weights. As long as the material boundaries 
(internal and external) of the body in question are known, the Gaussian points and weights 
can be calculated rather straightforwardly. In particular, no explicit discretization (meshing) 
of the body is required. This can be a significant advantage this method has over the more 
conventional methods in which meshing is required, as meshing is sometimes the Achilles' 
heels of these methods. 

A 3-D TEST OF NYSTROM METHOD USING IIM 

We tested the Nyström Method using IIM (NM-IIM) on an integral equation identical in 
form to equation (2.1) wherein equation (2.4) is used for the scattered field. However, the 
test problem was chosen to have no singularity, as we were only interested, at the initial 
stage, in testing the NM-IIM in a setting insulated from other factors that may complicate 
the problem. 

The irradiated body is a 5 cm sphere. For simplicity, we used 

in the equation 

E(r)   =   [x,y,z] 

g(r,r')   =   (x - x')4 + (y - y? + (* - *T 

BF(r)   -    / G(r,r')(F(r')-F(r))<fV 

-   Einc(r) 

8 



to generate an "incident wave". Here 

B   =   a(r)I-^   /    Vg(r,r')h'dS' 

-W   =   7(r)-1 ^'] iV' 
F(r)   =   r(r)E(r) 

Figure 2 compares the real part of the z-component of the calculated field with that of 
the actual field along the z-axis. For this simple test, this is just z. Thus, the straight line 
in Figure 2 is expected. 

Figure 2. Actual vs Calculated Re(Ez) (er=52: N=151) 
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A total of 151 quadrature points in the sphere were picked (by the solver). The "relative 
permittivity" was chosen to be 52. Judging from this test, albeit simple, the IIM seems to 
be working. 



APPLICATIONS 

Finally, we applied the 3D NM-IIM to a realistic problem consisting of a dielectric sphere 
incident by a 1-GHz plane wave propagating along the z-axis towards positive infinity. The 
radius of the sphere is 5 (cm) and the conductivity is set to 0.015625 (mhos/m). 

A. Homogeneous Sphere 

The results of applying NM-IIM to the above problem using differing relative permittivities 
(er) are shown in the Figure 3. It compares the real part of actual x-component of the E field 
along the z-axis to that calculated by NM-IIM. The dotted lines in the Figure 3 represent 
the actual (Mie) solutions, one for each relative permittivity. Here er « l+,2+,3+,and 13+. 

There is generally a fairly good agreement between the actual and the calculated, al- 
though again performance noticeably deteriorates with increased relative permittivity or, 
equivalently, with higher contrasts. The number of quadrature points used for this sphere is 
608. 

B. An Inhomogeneous Sphere 

By manipulating the limits of integration in IIM, the NM-IIM can also be applied to inhomo- 
geneity bodies. More generally, one can vary the grid size (resolution) from one sub-region 
to another in the body quite straightforwardly. 

The Figure 4 shows the result of using NM-IIM on the above sphere using different 
resolutions in two different sub-regions. The sphere is divided into two sub-regions, an inner 
sphere and an outer layer. The radius of the inner sphere is 2.5 cm, whereas the complete 
sphere again has radius 5 cm. The outer layer is chosen to have twice the resolution as 
that of the inner sphere. We also compare this variable grid case to a uniform grid case. 
The resolution of the uniform grid is equal to that of the inner sphere of the variable grid 
case. A total of 151 points is used for the uniform grid case and 612 points for the variable 
grid case. The relative permittivity is approximately 3. Figure 4 shows the calculated and 
actual real part of the x-compoenent of the E field along the z-axis of the sphere. Again, the 
incident plane wave, linearly polarized in the x-direction, is propagating from the negative 
z-direction. linearly polarized in the x-direction. 

Again, the calculated field compares quite well with the theoretical solution and the 
added resolution in the outer layer has noticeably improved the accuracy of the method. 

10 
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Figure 3. Calculated Re(Ex) vs Actuals (N=608) 
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Figure 4. Calculated Re(Ex) Using Variable Grid and Uniform Grid vs Actual (er = 3+) 
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DISCUSSION AND CONCLUSION 

The Nyström Method in combination with the Iterated Integral Method (NM-IIM) as imple- 
mented here has out-performed other methods that we have previously tried. Because it is 
"grid-free" and relatively easy to implement, it can easily be used on other geometry (besides 
spheres) like layered ellipsoids, finite layered cylinders, or even simple human organs. 

There is obviously much room for improvement. The first approximation we used in 
treating the singularity can obviously be improved. The fact that the estimates near the 
boundary is generally poorer than those in the middle may be consequence of this first 
approximation. In the neighborhood of a singularity, the integrand is a function of the 
Jacobian of the unknown F(r). The assumption that this contribution is small may not be 
appropriate near a boundary. 

We should probably use even more sophisticated 1-D Gaussian quadrature formulas that 
will take better account of the singularity in the problem, similar in flavor to that discussed 
in [6]. Hopefully, this will then allow us to address problems with even higher contrasts that 
one routinely encounters in human organs. 

A rigorous numerical analysis of NM-IIM is obviously needed. Good performance of a 
method on test problems only lends credence to the method, but never an absolute proof. 
The same analysis can invariably lead to improvement of the method. 

Finally, as is always the case, we would like to be able to solve more practical and more 
realistic problems (bigger geometry, higher frequencies, and severer inhomogeneity) and to 
do so faster. Parallel computing on high performance computers is the most obvious answer. 
We have just started to explore this possibility. 
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